Deep Unsupervised 3D Human Body Reconstruction from a Sparse set of Landmarks

In this paper we propose the first deep unsupervised approach in human body reconstruction to estimate body surface from a sparse set of landmarks, so called DeepMurf . We apply a denoising autoencoder to estimate missing landmarks. Then we apply an attention model to estimate body joints from landm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2021-08, Vol.129 (8), p.2499-2512
Hauptverfasser: Madadi, Meysam, Bertiche, Hugo, Escalera, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we propose the first deep unsupervised approach in human body reconstruction to estimate body surface from a sparse set of landmarks, so called DeepMurf . We apply a denoising autoencoder to estimate missing landmarks. Then we apply an attention model to estimate body joints from landmarks. Finally, a cascading network is applied to regress parameters of a statistical generative model that reconstructs body. Our set of proposed loss functions allows us to train the network in an unsupervised way. Results on four public datasets show that our approach accurately reconstructs the human body from real world mocap data.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-021-01488-2