Analyzing the Features Affecting the Performance of Teachers during Covid-19: A Multilevel Feature Selection
COVID-19 is a profoundly contagious pandemic that has taken the world by storm and has afflicted different fields of life with negative effects. It has had a substantial impact on education which is evident from the transition from Face-to-Face (F2F) teaching to online mode of education and the rigi...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-07, Vol.10 (14), p.1673 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | COVID-19 is a profoundly contagious pandemic that has taken the world by storm and has afflicted different fields of life with negative effects. It has had a substantial impact on education which is evident from the transition from Face-to-Face (F2F) teaching to online mode of education and the rigid implementation of lockdown across the globe. This study examines the factors impacting the performance of teachers during the lockdown period of COVID-19 using various feature selection algorithms and Artificial Intelligence techniques. In this paper, we have proposed a novel multilevel feature selection for the prediction of the factors affecting the teachers’ satisfaction with online teaching and learning in COVID-19. The proposed multilevel feature selection is composed of the Fast Correlation Based Filter (FCBF), Mutual Information (MI), Relieff, and Particle Swarm Optimization (PSO) feature selection. The performance of the proposed feature selection approach is evaluated through the teachers’ benchmark dataset. We used a range of measures like accuracy, precision, f-measure, and recall to evaluate the performance of the proposed approach. We applied different machine learning approaches (SVM, LGBM, and ANN) with the proposed multilevel feature selection technique. The performance of the proposed approach is also compared with existing feature selection algorithms, and the results show the improvement in the performance of feature selection in terms of accuracy, precision, recall, and F-Measure. Proposed feature selection provides more than 80% accuracy with Light Weight Gradient Boosting Machine (LGBM). |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10141673 |