On Knots, Complements, and 6j-Symbols
This paper investigates the relation between colored HOMFLY-PT and Kauffman homology, SO ( N ) quantum 6 j -symbols, and ( a , t )-deformed F K . First, we present a simple rule of grading change which allows us to obtain the [ r ]-colored quadruply graded Kauffman homology from the [ r 2 ] -colore...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2021-08, Vol.22 (8), p.2691-2720 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the relation between colored HOMFLY-PT and Kauffman homology,
SO
(
N
)
quantum 6
j
-symbols, and (
a
,
t
)-deformed
F
K
. First, we present a simple rule of grading change which allows us to obtain the [
r
]-colored quadruply graded Kauffman homology from the
[
r
2
]
-colored quadruply graded HOMFLY-PT homology for thin knots. This rule stems from the isomorphism of the representations
(
so
6
,
[
r
]
)
≅
(
sl
4
,
[
r
2
]
)
. Also, we find the relationship among
A
-polynomials of
SO
and
SU
type coming from a differential on Kauffman homology. Second, we put forward a closed-form expression of
SO
(
N
)
(
N
≥
4
)
quantum 6
j
-symbols for symmetric representations and calculate the corresponding
SO
(
N
)
fusion matrices for the cases when representations
. Third, we conjecture closed-form expressions of (
a
,
t
)-deformed
F
K
for the complements of double twist knots with positive braids. Using the conjectural expressions, we derive
t
-deformed ADO polynomials. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-021-01033-4 |