Design of heat sinks for wearable thermoelectric generators to power personal heating garments: A numerical study
To mitigate climate change attributed to the built environments, there have been tremendous efforts to improve air conditioning systems in the buildings. The possibility of harvesting body heat as a renewable energy source to power a wearable personal heating system is investigated. The aim of this...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2020-01, Vol.410 (1), p.12096 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To mitigate climate change attributed to the built environments, there have been tremendous efforts to improve air conditioning systems in the buildings. The possibility of harvesting body heat as a renewable energy source to power a wearable personal heating system is investigated. The aim of this study is to integrate a wearable personal heating system with a thermoelectric generator (TEG) that harvests the body heat which is used to convert it into electricity. Moreover, the interaction between the TEG configuration and power output is studied. The power generation of TEG system is obtained by COMSOL Multiphysics software. The simulation results concluded that all the four proposed heat sink configurations can improve the power output of the wearable TEG at 1.4 m/s and 3m/s compared to that of the reference model. Furthermore, the perforated and trapezium shapes of heat sinks have a significantly better performance in comparison to conventional heat sinks. |
---|---|
ISSN: | 1755-1307 1755-1315 |
DOI: | 10.1088/1755-1315/410/1/012096 |