Price Prediction in a Trading Agent Competition

The 2002 Trading Agent Competition (TAC) presented a challenging market game in the domain of travel shopping. One of the pivotal issues in this domain is uncertainty about hotel prices, which have a significant influence on the relative cost of alternative trip schedules. Thus, virtually all partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2004-01, Vol.21, p.19-36
Hauptverfasser: Wellman, M. P., Reeves, D. M., Lochner, K. M., Vorobeychik, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 2002 Trading Agent Competition (TAC) presented a challenging market game in the domain of travel shopping. One of the pivotal issues in this domain is uncertainty about hotel prices, which have a significant influence on the relative cost of alternative trip schedules. Thus, virtually all participants employ some method for predicting hotel prices. We survey approaches employed in the tournament, finding that agents apply an interesting diversity of techniques, taking into account differing sources of evidence bearing on prices. Based on data provided by entrants on their agents' actual predictions in the TAC-02 finals and semifinals, we analyze the relative efficacy of these approaches. The results show that taking into account game-specific information about flight prices is a major distinguishing factor. Machine learning methods effectively induce the relationship between flight and hotel prices from game data, and a purely analytical approach based on competitive equilibrium analysis achieves equal accuracy with no historical data. Employing a new measure of prediction quality, we relate absolute accuracy to bottom-line performance in the game.
ISSN:1076-9757
1076-9757
1943-5037
DOI:10.1613/jair.1333