Learning Optimal Bayesian Networks: A Shortest Path Perspective

In this paper, learning a Bayesian network structure that optimizes a scoring function for a given dataset is viewed as a shortest path problem in an implicit state-space search graph. This perspective highlights the importance of two research issues: the development of search strategies for solving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2013-01, Vol.48, p.23-65
Hauptverfasser: Yuan, C., Malone, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, learning a Bayesian network structure that optimizes a scoring function for a given dataset is viewed as a shortest path problem in an implicit state-space search graph. This perspective highlights the importance of two research issues: the development of search strategies for solving the shortest path problem, and the design of heuristic functions for guiding the search. This paper introduces several techniques for addressing the issues. One is an A* search algorithm that learns an optimal Bayesian network structure by only searching the most promising part of the solution space. The others are mainly two heuristic functions. The first heuristic function represents a simple relaxation of the acyclicity constraint of a Bayesian network. Although admissible and consistent, the heuristic may introduce too much relaxation and result in a loose bound. The second heuristic function reduces the amount of relaxation by avoiding directed cycles within some groups of variables. Empirical results show that these methods constitute a promising approach to learning optimal Bayesian network structures.
ISSN:1076-9757
1076-9757
1943-5037
DOI:10.1613/jair.4039