An Empirical Evaluation of Ranking Measures With Respect to Robustness to Noise

Ranking measures play an important role in model evaluation and selection. Using both synthetic and real-world data sets, we investigate how different types and levels of noise affect the area under the ROC curve (AUC), the area under the ROC convex hull, the scored AUC, the Kolmogorov-Smirnov stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of artificial intelligence research 2014-01, Vol.49, p.241-267
1. Verfasser: Berrar, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ranking measures play an important role in model evaluation and selection. Using both synthetic and real-world data sets, we investigate how different types and levels of noise affect the area under the ROC curve (AUC), the area under the ROC convex hull, the scored AUC, the Kolmogorov-Smirnov statistic, and the H-measure. In our experiments, the AUC was, overall, the most robust among these measures, thereby reinvigorating it as a reliable metric despite its well-known deficiencies. This paper also introduces a novel ranking measure, which is remarkably robust to noise yet conceptually simple.
ISSN:1076-9757
1076-9757
1943-5037
DOI:10.1613/jair.4136