Ultraweak formulation of linear PDEs in nondivergence form and DPG approximation
We develop and analyze an ultraweak formulation of linear PDEs in nondivergence form where the coefficients satisfy the Cordes condition. Based on the ultraweak formulation we propose discontinuous Petrov–Galerkin (DPG) methods. We investigate Fortin operators for the fully discrete schemes and prov...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2021-08, Vol.95, p.67-84 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop and analyze an ultraweak formulation of linear PDEs in nondivergence form where the coefficients satisfy the Cordes condition. Based on the ultraweak formulation we propose discontinuous Petrov–Galerkin (DPG) methods. We investigate Fortin operators for the fully discrete schemes and provide a posteriori estimators for the methods under consideration. Numerical experiments are presented in the case of uniform and adaptive mesh-refinement. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2020.07.007 |