Approximation and Extension of Functions of Vanishing Mean Oscillation

We consider various definitions of functions of vanishing mean oscillation on a domain Ω ⊂ R n . If the domain is uniform, we show that there is a single extension operator which extends functions in these spaces to functions in the corresponding spaces on R n , and also extends BMO ( Ω ) to BMO ( R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021-07, Vol.31 (7), p.6892-6921
Hauptverfasser: Butaev, Almaz, Dafni, Galia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider various definitions of functions of vanishing mean oscillation on a domain Ω ⊂ R n . If the domain is uniform, we show that there is a single extension operator which extends functions in these spaces to functions in the corresponding spaces on R n , and also extends BMO ( Ω ) to BMO ( R n ) , generalizing the result of Jones. Moreover, this extension maps Lipschitz functions to Lipschitz functions. Conversely, if there is a linear extension map taking Lipschitz functions with compact support in Ω to functions in BMO ( R n ) , which is bounded in the BMO norm, then the domain must be uniform. In connection with these results we investigate the approximation of functions of vanishing mean oscillation by Lipschitz functions on unbounded domains.
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-020-00526-8