Development of an Alternative Test System for Chronic Testing of Lotic Macroinvertebrate Species: A Case Study with the Insecticide Imidacloprid

There are currently few suitable test systems for the chronic toxicity testing of aquatic macroinvertebrates under stream conditions. Therefore, a new test system mimicking running water conditions was developed for testing with lotic insects. This system uses small test cages, with 10 of these susp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology and chemistry 2021-08, Vol.40 (8), p.2229-2239
Hauptverfasser: Brüggemann, Maria, Hund‐Rinke, Kerstin, Böhmer, Walter, Schaefers, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are currently few suitable test systems for the chronic toxicity testing of aquatic macroinvertebrates under stream conditions. Therefore, a new test system mimicking running water conditions was developed for testing with lotic insects. This system uses small test cages, with 10 of these suspended inside each 25‐L container and rotating at 0.1 m/s, to create a water flow for the individual organism inside each cage. To test the performance of the new exposure system, chronic effects (21 d) of the neonicotinoid imidacloprid were investigated with field‐collected larvae of the stonefly Protonemura sp. Endpoints were survival, growth, and/or emergence (depending on the developmental stage of the larvae at the start of the exposure). Two experiments conducted 1 yr apart showed good reproducibility: growth 10% effect concentration (EC10) values were 15.3 and 18.5 μg/L and no‐observed‐effect concentration (NOEC) values were 30.3 and 21.5 μg/L. A third experiment, performed with further‐developed larval instars, showed a significant effect of imidacloprid on emergence (with EC10 of 5.97 μg/L and NOEC of 2.89 μg/L) and a significant effect on survival (with median lethal concentration of 44.7 µg/L). The results of the present study show that the newly developed test system provides a suitable approach for toxicity testing with stonefly larvae and potentially for other lotic macroinvertebrate species. Environ Toxicol Chem 2021;40:2229–2239. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
ISSN:0730-7268
1552-8618
DOI:10.1002/etc.5070