Probabilistic Models for Fatigue Resistance of Seven-Wire Prestressing Strands and Stay Cables

Abstract Parallel seven-wire steel prestressing strands are the dominant form of the main tension elements (MTE) used in stay cables. In this paper, probabilistic models for fatigue resistance of seven-wire prestressing strands that are not embedded in concrete and are subjected to axial stresses ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bridge engineering 2021-10, Vol.26 (10)
Hauptverfasser: Nabizadeh, Azam, Al-Barqawi, Mohammad O, Tabatabai, Habib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Parallel seven-wire steel prestressing strands are the dominant form of the main tension elements (MTE) used in stay cables. In this paper, probabilistic models for fatigue resistance of seven-wire prestressing strands that are not embedded in concrete and are subjected to axial stresses are developed. Available test data from seven-wire strand fatigue tests were collected and analyzed to develop probabilistic models and nonlinear S–N curves using survival analysis techniques. Results indicate that the fatigue resistance of classic stress-relieved strands produced before early 1980s is higher than the modern low-relaxation strands that have been manufactured since then. Neither the conventional classic nor the modern strands have a good chance of passing the fatigue qualification tests required by the latest design standards for use in stay cables. Only the cable-quality (CQ) strands can pass the latest fatigue qualification tests with a less than 2.5% probability of failure. Nonlinear S–N equations for all three strand types and stay cables made with CQ strands are proposed using a log-logistic parametric survival model.
ISSN:1084-0702
1943-5592
DOI:10.1061/(ASCE)BE.1943-5592.0001768