The Parabolic Mandelbrot Set

We solve the longstanding conjecture by Milnor (1993) concerning the connectedness locus \(M_1\) of the family of quadratic rational maps tangent to the identity at \(\infty\). We prove that this locus in homeomorphic to the Mandelbrot set \(M\) and that the homeomorphism is unique, provided it iden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Carsten Lunde Petersen, Roesch, Pascale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We solve the longstanding conjecture by Milnor (1993) concerning the connectedness locus \(M_1\) of the family of quadratic rational maps tangent to the identity at \(\infty\). We prove that this locus in homeomorphic to the Mandelbrot set \(M\) and that the homeomorphism is unique, provided it identifies maps that are "hybridly" conjugate on their filled-in Julia set. Moreover this homeomorphism from \(M\) to \(M_1\) is nowhere H\"older on the boundary and so can not have even locally a quasi-conformal extension to complements.
ISSN:2331-8422