Limits of Inductive Sequences of Toeplitz–Cuntz Algebras
We consider inductive sequences of Toeplitz–Cuntz algebras. The connecting homomorphisms of such a sequence are defined by a finite set of sequences of positive integers. We prove that the inductive limit of such a sequence of Toeplitz–Cuntz algebras is isomorphic to the reduced semigroup -algebra c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2021-07, Vol.313 (1), p.60-69 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider inductive sequences of Toeplitz–Cuntz algebras. The connecting homomorphisms of such a sequence are defined by a finite set of sequences of positive integers. We prove that the inductive limit of such a sequence of Toeplitz–Cuntz algebras is isomorphic to the reduced semigroup
-algebra constructed for the unitalization of the free product of a finite family of semigroups of positive rational numbers. We show that the limit of the inductive sequence of Toeplitz–Cuntz algebras defined by a finite set of sequences of positive integers is a simple
-algebra. |
---|---|
ISSN: | 0081-5438 1531-8605 |
DOI: | 10.1134/S0081543821020073 |