Limits of Inductive Sequences of Toeplitz–Cuntz Algebras

We consider inductive sequences of Toeplitz–Cuntz algebras. The connecting homomorphisms of such a sequence are defined by a finite set of sequences of positive integers. We prove that the inductive limit of such a sequence of Toeplitz–Cuntz algebras is isomorphic to the reduced semigroup -algebra c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2021-07, Vol.313 (1), p.60-69
Hauptverfasser: Grigoryan, S. A., Gumerov, R. N., Lipacheva, E. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider inductive sequences of Toeplitz–Cuntz algebras. The connecting homomorphisms of such a sequence are defined by a finite set of sequences of positive integers. We prove that the inductive limit of such a sequence of Toeplitz–Cuntz algebras is isomorphic to the reduced semigroup -algebra constructed for the unitalization of the free product of a finite family of semigroups of positive rational numbers. We show that the limit of the inductive sequence of Toeplitz–Cuntz algebras defined by a finite set of sequences of positive integers is a simple -algebra.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543821020073