Formally exact simulations of mesoscale exciton dynamics in molecular materials

Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2021-07, Vol.12 (28), p.974-9711
Hauptverfasser: Varvelo, Leonel, Lynd, Jacob K, Bennett, Doran I. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hierarchy of pure states equations (HOPS). We demonstrate that our adaptive HOPS (adHOPS) methodology provides a formally exact and size-invariant ( i.e. , ) scaling algorithm for simulating mesoscale quantum dynamics. Finally, we provide proof-of-principle calculations for exciton diffusion on linear chains containing up to 1000 molecules. The adaptive hierarchy of pure states (adHOPS) algorithm leverages the locality of excitons in molecular materials to perform formally-exact simulations with size-invariant ( i.e. , ) scaling, enabling efficient simulations of mesoscale exciton dynamics.
ISSN:2041-6520
2041-6539
DOI:10.1039/d1sc01448j