Formally exact simulations of mesoscale exciton dynamics in molecular materials
Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hie...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2021-07, Vol.12 (28), p.974-9711 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hierarchy of pure states equations (HOPS). We demonstrate that our adaptive HOPS (adHOPS) methodology provides a formally exact and size-invariant (
i.e.
,
) scaling algorithm for simulating mesoscale quantum dynamics. Finally, we provide proof-of-principle calculations for exciton diffusion on linear chains containing up to 1000 molecules.
The adaptive hierarchy of pure states (adHOPS) algorithm leverages the locality of excitons in molecular materials to perform formally-exact simulations with size-invariant (
i.e.
,
) scaling, enabling efficient simulations of mesoscale exciton dynamics. |
---|---|
ISSN: | 2041-6520 2041-6539 |
DOI: | 10.1039/d1sc01448j |