Diffusions interacting through a random matrix: universality via stochastic Taylor expansion

Consider ( X i ( t ) ) solving a system of N stochastic differential equations interacting through a random matrix J = ( J ij ) with independent (not necessarily identically distributed) random coefficients. We show that the trajectories of averaged observables of ( X i ( t ) ) , initialized from so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2021-08, Vol.180 (3-4), p.1057-1097
Hauptverfasser: Dembo, Amir, Gheissari, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider ( X i ( t ) ) solving a system of N stochastic differential equations interacting through a random matrix J = ( J ij ) with independent (not necessarily identically distributed) random coefficients. We show that the trajectories of averaged observables of ( X i ( t ) ) , initialized from some μ independent of  J , are universal, i.e., only depend on the choice of the distribution J through its first and second moments (assuming e.g., sub-exponential tails). We take a general combinatorial approach to proving universality for dynamical systems with random coefficients, combining a stochastic Taylor expansion with a moment matching-type argument. Concrete settings for which our results imply universality include aging in the spherical SK spin glass, and Langevin dynamics and gradient flows for symmetric and asymmetric Hopfield networks.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-021-01027-7