In situ tailoring bimetallic–organic framework-derived yolk–shell NiS2/CuS hollow microspheres: an extraordinary kinetically pseudocapacitive nanoreactor for an effective sodium-ion storage anode
Pseudocapacitive electrochemical Na+-storage has been highlighted as one of the exploitable strategies for overcoming the sluggish diffusion-limited redox kinetics due to the effective structural preservation and fast ion-adsorption/desorption at the surface or quasi-surface of electrode materials....
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-07, Vol.9 (28), p.15807-15819 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pseudocapacitive electrochemical Na+-storage has been highlighted as one of the exploitable strategies for overcoming the sluggish diffusion-limited redox kinetics due to the effective structural preservation and fast ion-adsorption/desorption at the surface or quasi-surface of electrode materials. However, exploiting pseudocapacitive hosts with a micro–nano hierarchitecture and further achieving competitive pseudocapacitive contributions are still in their infancy so far. Herein, a yolk–shell NiS2/CuS hollow microspherical architecture with superb kinetically pseudocapacitive features was successfully constructed through an in situ hydrothermal sulfidation and subsequent ion-exchange route using Ni-based bimetallic (NiZn) organic frameworks (NiZn-MOFs) as a template precursor. As expected, the strongly synergistic coupling effect and hollow structural characteristic of the NiS2/CuS heterostructure enabled fast charge transfer and Na+ immigration, as well as the release of the mechanical stress/strain induced by the conversion reaction, and not unexpectedly, the NiS2/CuS electrode afforded extraordinary Na+-storage capability, including a remarkable specific capacity of 410.9 mA h g−1 after 750 cycles at 2.0 A g−1, excellent rate capability, and prolonged cyclability in terms of a remarkable 283.4 mA h g−1 even after 4200 cycles at 20.0 A g−1. More significantly, the kinetic analysis demonstrated that the electrochemical charge storage of the NiS2/CuS electrode manifested considerable pseudocapacitive contributions at all rates (90.0% to 96.9%), distinctly outperforming the previously reported NiS2-/CuS-based anodes. Furthermore, the density functional theoretical calculations suggested a fast Na+-transport kinetics and enhanced antibonding state energy level and Na2S adsorption energy due to the electronic redistribution and lattice distortion in the NiS2/CuS heterointerfaces. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d1ta04386b |