Cirrus cloud formation and ice supersaturated regions in a global climate model

At temperatures below 238K, cirrus clouds can form by homogeneous and heterogeneous ice nucleation mechanisms. ECHAM5 contains a two-moment cloud microphysics scheme and permits cirrus formation by homogeneous freezing of solution droplets and heterogeneous freezing on immersed dust nuclei. On chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2008-10, Vol.3 (4), p.045022-045022 (11)
Hauptverfasser: Lohmann, Ulrike, Spichtinger, Peter, Jess, Stephanie, Peter, Thomas, Smit, Herman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:At temperatures below 238K, cirrus clouds can form by homogeneous and heterogeneous ice nucleation mechanisms. ECHAM5 contains a two-moment cloud microphysics scheme and permits cirrus formation by homogeneous freezing of solution droplets and heterogeneous freezing on immersed dust nuclei. On changing the mass accommodation coefficient, α, of water vapor on ice crystals from 0.5 in the standard ECHAM5 simulation to 0.006 as suggested by previous laboratory experiments, the number of ice crystals increases by a factor of 14, as a result of the delayed relaxation of supersaturation. At the same time, the ice water path increases by only 29% in the global annual mean, indicating that the ice crystals are much smaller in the case of low α. As a consequence, the short wave and long wave cloud forcing at the top of the atmosphere increase by 15 and 18Wm−2, respectively. Assuming heterogeneous freezing caused by immersed dust particles instead of homogeneous freezing, the effect is much weaker, decreasing the global annual mean short wave and long wave cloud forcing by 2.7 and 4.7Wm−2. Overall, these results provide little support, if any, for kinetic growth limitation of ice particles (i.e.a very low α).
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/3/4/045022