Localization of Alternating Magnetic Dipole in the Near-Field Zone with Single-Component Magnetometers

Tri-axis magnetometers are widely used to measure magnetic field in engineering of the magnetic localization technology. However, the magnetic field measurement precision is influenced by the nonorthogonal error of tri-axis magnetometers. A locating model of the alternating magnetic dipole in the ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021, Vol.2021, p.1-11
Hauptverfasser: Xiang, Gao, Bo-cheng, Du, Qi-long, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tri-axis magnetometers are widely used to measure magnetic field in engineering of the magnetic localization technology. However, the magnetic field measurement precision is influenced by the nonorthogonal error of tri-axis magnetometers. A locating model of the alternating magnetic dipole in the near-field zone with single-component magnetometers was proposed in this paper. Using the vertical component of the low-frequency magnetic field acquired by at least six single-component magnetometers, the localization of an alternating magnetic dipole could be attributed to the solution for a class of nonlinear unconstrained optimization problem. In order to calculate the locating information of alternating magnetic dipole, a hybrid algorithm combining the Gauss–Newton algorithm and genetic algorithm was applied. The theoretical simulation and field experiment for the localization of alternating magnetic dipole source were carried out, respectively. The positioning result is stable and reliable, indicating that the locating model has better performance and could meet the requirements of actual positioning.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/8357981