Human behavioral pattern analysis-based anomaly detection system in residential space

Increasingly, research has analyzed human behavior in various fields. The fourth industrial revolution technology is very useful for analyzing human behavior. From the viewpoint of the residential space monitoring system, the life patterns in human living spaces vary widely, and it is very difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2021, Vol.77 (8), p.9248-9265
Hauptverfasser: Choi, Seunghyun, Kim, Changgyun, Kang, Yong-Shin, Youm, Sekyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasingly, research has analyzed human behavior in various fields. The fourth industrial revolution technology is very useful for analyzing human behavior. From the viewpoint of the residential space monitoring system, the life patterns in human living spaces vary widely, and it is very difficult to find abnormal situations. Therefore, this study proposes a living space-based monitoring system. The system includes the behavioral analysis of monitored subjects using a deep learning methodology, behavioral pattern derivation using the PrefixSpan algorithm, and the anomaly detection technique using sequence alignment. Objectivity was obtained through behavioral recognition using deep learning rather than subjective behavioral recording, and the time to derive a pattern was shortened using the PrefixSpan algorithm among sequential pattern algorithms. The proposed system provides personalized monitoring services by applying the methodology of other fields to human behavior. Thus, the system can be extended using another methodology or fourth industrial revolution technology.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-021-03641-7