Short Time Large Deviations of the KPZ Equation
We establish the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter ε to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2021-08, Vol.386 (1), p.359-393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish the Freidlin–Wentzell Large Deviation Principle (LDP) for the Stochastic Heat Equation with multiplicative noise in one spatial dimension. That is, we introduce a small parameter
ε
to the noise, and establish an LDP for the trajectory of the solution. Such a Freidlin–Wentzell LDP gives the short-time, one-point LDP for the KPZ equation in terms of a variational problem. Analyzing this variational problem under the narrow wedge initial data, we prove a quadratic law for the near-center tail and a
5
2
law for the deep lower tail. These power laws confirm existing physics predictions (Kolokolov and Korshunov in Phys Rev B 75(14):140201, 2007, Phys Rev E 80(3):031107, 2009; Meerson et al. in Phys Rev Lett 116(7):070601, 2016; Le Doussal et al. in Phys Rev Lett 117(7):070403, 2016; Kamenev et al. in Phys Rev E 94(3):032108, 2016). |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-021-04050-w |