Linear dichroism in few-photon ionization of laser-dressed helium

Ionization of laser-dressed atomic helium is investigated with focus on photoelectron angular distributions stemming from two-color multi-photon excited states. The experiment combines extreme ultraviolet (XUV) with infrared (IR) radiation, while the relative polarization and the temporal delay betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2021-07, Vol.75 (7), Article 205
Hauptverfasser: Meister, Severin, Bondy, Aaron, Schnorr, Kirsten, Augustin, Sven, Lindenblatt, Hannes, Trost, Florian, Xie, Xinhua, Braune, Markus, Manschwetus, Bastian, Schirmel, Nora, Redlin, Harald, Douguet, Nicolas, Pfeifer, Thomas, Bartschat, Klaus, Moshammer, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ionization of laser-dressed atomic helium is investigated with focus on photoelectron angular distributions stemming from two-color multi-photon excited states. The experiment combines extreme ultraviolet (XUV) with infrared (IR) radiation, while the relative polarization and the temporal delay between the pulses can be varied. By means of an XUV photon energy scan over several electronvolts, we get access to excited states in the dressed atom exhibiting various binding energies, angular momenta, and magnetic quantum numbers. Furthermore, varying the relative polarization is employed as a handle to switch on and off the population of certain states that are only accessible by two-photon excitation. In this way, photoemission can be suppressed for specific XUV photon energies. Additionally, we investigate the dependence of the photoelectron angular distributions on the IR laser intensity. At our higher IR intensities, we start leaving the simple multi-photon ionization regime. The interpretation of the experimental results is supported by numerically solving the time-dependent Schrödinger equation in a single-active-electron approximation. Graphic abstract
ISSN:1434-6060
1434-6079
DOI:10.1140/epjd/s10053-021-00218-0