Observer-based continuous adaptive sliding mode control for soft actuators

Fabricated by high elastic materials, soft actuators provide a prominent solution for soft rehabilitation gloves, soft graspers and locomotion robots. However, the control of soft actuators is a grant challenge due to dynamic modeling error and unavailable system states. This paper proposes an obser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-07, Vol.105 (1), p.371-386
Hauptverfasser: Cao, Guizhou, Liu, Yanhong, Jiang, Yichen, Zhang, Fangfang, Bian, Guibin, Owens, David H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fabricated by high elastic materials, soft actuators provide a prominent solution for soft rehabilitation gloves, soft graspers and locomotion robots. However, the control of soft actuators is a grant challenge due to dynamic modeling error and unavailable system states. This paper proposes an observer-based continuous adaptive sliding mode controller for soft actuators in the presence of system uncertainties without knowledge of its upper bound in prior. By exploiting a novel nonsingular fast terminal sliding mode (NFTSM) surface and a high-order sliding mode (HOSM) observer, the proposed control scheme features adaptive-tuning gains, continuity, singularity-free, stronger robustness and higher tracking accuracy. The stability of the proposed controller is analyzed by the Lyapunov method. Corresponding comparative simulations and experiments of a soft pneumatic network actuator verify the effectiveness and related features of the proposed controller.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-021-06606-w