On an exponential-trigonometric natural interpolation spline
In the present paper, using the discrete analogue of the operator d8/dx8 + 2d4/dx4 + 1, an interpolation spline that minimizes the quantity ∫01(φIV(x)+φ(x))2dx in the Hilbert space W2(4,0) is constructed. Explicit formulas for the coefficients of the interpolation spline are obtained. The obtained i...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, using the discrete analogue of the operator d8/dx8 + 2d4/dx4 + 1, an interpolation spline that minimizes the quantity ∫01(φIV(x)+φ(x))2dx in the Hilbert space W2(4,0) is constructed. Explicit formulas for the coefficients of the interpolation spline are obtained. The obtained interpolation spline is exact for the exponential-trigonometric functions e22xcos(22x),e22xsin(22x),e−22xcos(22x)and e−22xsin(22x). At the end of the paper we give some numerical results which confirm our theoretical results. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0057116 |