A symmetric formula for hypergeometric series
In terms of Dougall’s 2 H 2 series identity and the series rearrangement method, we establish a symmetric formula for hypergeometric series. Then it is utilized to derive a known nonterminating form of Saalschütz’s theorem. Similarly, we also show that Bailey’s 6 ψ 6 series identity implies the nont...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2021-08, Vol.55 (3), p.919-927 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In terms of Dougall’s
2
H
2
series identity and the series rearrangement method, we establish a symmetric formula for hypergeometric series. Then it is utilized to derive a known nonterminating form of Saalschütz’s theorem. Similarly, we also show that Bailey’s
6
ψ
6
series identity implies the nonterminating form of Jackson’s
8
ϕ
7
summation formula. Considering the reversibility of the proofs, it is routine to show that Dougall’s
2
H
2
series identity is equivalent to a known nonterminating form of Saalschütz’s theorem and Bailey’s
6
ψ
6
series identity is equivalent to the nonterminating form of Jackson’s
8
ϕ
7
summation formula. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-019-00248-8 |