A symmetric formula for hypergeometric series

In terms of Dougall’s 2 H 2 series identity and the series rearrangement method, we establish a symmetric formula for hypergeometric series. Then it is utilized to derive a known nonterminating form of Saalschütz’s theorem. Similarly, we also show that Bailey’s 6 ψ 6 series identity implies the nont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2021-08, Vol.55 (3), p.919-927
1. Verfasser: Wei, Chuanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In terms of Dougall’s 2 H 2 series identity and the series rearrangement method, we establish a symmetric formula for hypergeometric series. Then it is utilized to derive a known nonterminating form of Saalschütz’s theorem. Similarly, we also show that Bailey’s 6 ψ 6 series identity implies the nonterminating form of Jackson’s 8 ϕ 7 summation formula. Considering the reversibility of the proofs, it is routine to show that Dougall’s 2 H 2 series identity is equivalent to a known nonterminating form of Saalschütz’s theorem and Bailey’s 6 ψ 6 series identity is equivalent to the nonterminating form of Jackson’s 8 ϕ 7 summation formula.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-019-00248-8