Laser‐Induced Surface Reconstruction of Nanoporous Au‐Modified TiO2 Nanowires for In Situ Performance Enhancement in Desorption and Ionization Mass Spectrometry
The physicochemical properties of nanostructured substrates significantly impact laser desorption/ionization mass spectrometry (LDI‐MS) performance. Fundamental understanding of the substrate properties can provide insights into the design and development of an efficient LDI matrix. Herein, a hybrid...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-07, Vol.31 (29), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The physicochemical properties of nanostructured substrates significantly impact laser desorption/ionization mass spectrometry (LDI‐MS) performance. Fundamental understanding of the substrate properties can provide insights into the design and development of an efficient LDI matrix. Herein, a hybrid matrix of nanoporous Au‐modified TiO2 nanowires (npAu‐TNW) is developed to achieve enhanced LDI‐MS performance. Its origin is investigated based on hybrid matrix properties including photo–thermal conversion and electronic band structure. Notably, further improvement is obtained in the npAu‐TNW than in the pristine TNW and non‐porous Au nanoisland‐modified TNW (Au‐TNW) hybrid, which is attributed to the laser‐induced surface restructuring/melting phenomenon. Noticeable surface restructuring/melting occurs in the npAu by laser exposure through efficient photo–thermal conversion of the highly porous npAu. At this instant of npAu structural changes, internal energy transfer from the npAu to the adsorbed analyte is promoted, which facilitates desorption. Moreover, strain is developed in situ in the TNW adjacent to the restructuring npAu, which distorts the TNW lattice. The strain development reduces recombination rates of charge carriers by introducing shallow trap levels in the bandgap, which enhances the ionization process. Ultimately, the high LDI‐MS performance based on the npAu‐TNW hybrid matrix is demonstrated by analyzing neurotransmitter.
A hybrid matrix of nanoporous Au‐modified TiO2 nanowires (npAu‐TNW) is developed to achieve enhanced laser desorption/ionization performance. Its origin is investigated based on hybrid properties including photo–thermal conversion and electronic band structure. Surface restructuring/melting occurs noticeably in the npAu by laser exposure, which facilitates desorption through internal energy transfer and enhances ionization by introducing trap sites in the bandgap. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202102475 |