RF energy harvesting using a compact rectenna with an antenna array at 2.45 GHz for IoT applications

This work addresses the design, fabrication, and implementation of an RF energy harvester 2.45 GHz using a compact rectenna. Our proposed rectenna focuses on development of an antenna array and rectifier circuit. The proposed rectenna is fabricated using FR4 substrate with its overall size of 12.24...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Electrical Engineering 2021-06, Vol.72 (3), p.159-167
Hauptverfasser: Pramono, Subuh, Shidiq, Dwiki Dimas, Ibrahim, Muhammad Hamka, Adriyanto, Feri, Hikmaturokhman, Alfin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work addresses the design, fabrication, and implementation of an RF energy harvester 2.45 GHz using a compact rectenna. Our proposed rectenna focuses on development of an antenna array and rectifier circuit. The proposed rectenna is fabricated using FR4 substrate with its overall size of 12.24 cm × 18.17 cm with a thickness of 1.6 mm. The measured results show that a 10 dB bandwidth covering in 2374-2549 MHz (175 MHz) with center frequency 2415 MHz at of −18.2 dB. There is a bandwidth enhancement of 57.6% compared to the single antenna. Gaining of the antenna array is 6 dB that is double a single antenna gain. Spatial diversity technique in antenna array yields a bigger antenna gain thereby increasing the received power level. Experimental measurements are carried out that the rectenna is placed indoor (LOS) at 5 m and outdoor (NLOS) at 15 m. Furthermore, we also explore the rectifier circuit that to maximize the output voltage. The received RF power that transmitted from WiFi router is −55 dBm (0.15 nW/cm ) at 5 m and −59 dBm (0.06 nW/cm ) at 15 m, respectively. The output voltages are achieved that 1092.5 mV at a distance of 5 m (LOS) and 5.48 mV at a distance of 15 m (NLOS). The highest RF-DC conversion efficiency of our proposed rectenna reaches 77.6%. The rectenna potentially meets all requirements to power up the IoT applications.
ISSN:1339-309X
1335-3632
1339-309X
DOI:10.2478/jee-2021-0022