Deep Compositional Denoising for High‐quality Monte Carlo Rendering

We propose a deep‐learning method for automatically decomposing noisy Monte Carlo renderings into components that kernel‐predicting denoisers can denoise more effectively. In our model, a neural decomposition module learns to predict noisy components and corresponding feature maps, which are consecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2021-07, Vol.40 (4), p.1-13
Hauptverfasser: Zhang, Xianyao, Manzi, Marco, Vogels, Thijs, Dahlberg, Henrik, Gross, Markus, Papas, Marios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a deep‐learning method for automatically decomposing noisy Monte Carlo renderings into components that kernel‐predicting denoisers can denoise more effectively. In our model, a neural decomposition module learns to predict noisy components and corresponding feature maps, which are consecutively reconstructed by a denoising module. The components are predicted based on statistics aggregated at the pixel level by the renderer. Denoising these components individually allows the use of per‐component kernels that adapt to each component's noisy signal characteristics. Experimentally, we show that the proposed decomposition module consistently improves the denoising quality of current state‐of‐the‐art kernel‐predicting denoisers on large‐scale academic and production datasets.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14337