Transitional processes in linear stochastic parabolic and hyperbolic systems with constant delays

A scheme combining the classical method of steps with expansion of the state space (MSSSE) was earlier proposed for an analysis of systems of stochastic ordinary differential equations with one constant time delay (SODDEs). This two-stage scheme is adapted for the analysis of new models described by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Poloskov, Igor E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2371
creator Poloskov, Igor E.
description A scheme combining the classical method of steps with expansion of the state space (MSSSE) was earlier proposed for an analysis of systems of stochastic ordinary differential equations with one constant time delay (SODDEs). This two-stage scheme is adapted for the analysis of new models described by stochastic partial differential equations (SPDEs) with delays (SPDDEs). The modified scheme together with a usage of the generalized Fokker–Planck– Kolmogorov equation (FPK Eq.) for the probability density functional makes it possible to construct a chain of SPDEs without delays. We exploit this chain to obtain new sequence of PDEs for calculating the first moment functions (fields) of the solution on successive time intervals. Some results of symbolic and numeric calculations for parabolic and hyperbolic equations that carried out in the environment of the mathematical package Mathematica, are presented.
doi_str_mv 10.1063/5.0059644
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2551384033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551384033</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-59eb10a2c3ef0f03a0830f5c76ef268200b759cef84dc1ba88c1a1d80941db2c3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oMFb0LqbDabbI5S_IKClwrelslmQ7ekSdzZKvn3prTgzdPMwPMOPC9jtwIWAnL5oBYAqsyz7IzNhFIiKXKRn7MZQJklaSY_L9kV0RYgLYtCzxiuA3bko-87bPkQeuuIHHHf8dZ3DgOn2NsNUvSWDxiw6ttpw67mm3Fw4XjSSNHtiP_4uOG27yhiF3ntWhzpml002JK7Oc05-3h-Wi9fk9X7y9vycZUMItcxUaWrBGBqpWugAYmgJTTKFrlr0lynAFWhSusandVWVKi1FShqPXmJuppic3Z3_DtJfO0dRbPt92GyIpNORUidgZQTdX-kyPqIB20zBL_DMJrvPhhlTvWZoW7-gwWYQ99_AfkLnrl0BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2551384033</pqid></control><display><type>conference_proceeding</type><title>Transitional processes in linear stochastic parabolic and hyperbolic systems with constant delays</title><source>AIP Journals Complete</source><creator>Poloskov, Igor E.</creator><contributor>Trusov, Peter V. ; Matveenko, Valeriy P. ; Faerman, Vladimir A. ; Yants, Anton Yu</contributor><creatorcontrib>Poloskov, Igor E. ; Trusov, Peter V. ; Matveenko, Valeriy P. ; Faerman, Vladimir A. ; Yants, Anton Yu</creatorcontrib><description>A scheme combining the classical method of steps with expansion of the state space (MSSSE) was earlier proposed for an analysis of systems of stochastic ordinary differential equations with one constant time delay (SODDEs). This two-stage scheme is adapted for the analysis of new models described by stochastic partial differential equations (SPDEs) with delays (SPDDEs). The modified scheme together with a usage of the generalized Fokker–Planck– Kolmogorov equation (FPK Eq.) for the probability density functional makes it possible to construct a chain of SPDEs without delays. We exploit this chain to obtain new sequence of PDEs for calculating the first moment functions (fields) of the solution on successive time intervals. Some results of symbolic and numeric calculations for parabolic and hyperbolic equations that carried out in the environment of the mathematical package Mathematica, are presented.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0059644</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chains ; Hyperbolic systems ; Ordinary differential equations ; Partial differential equations ; Time lag</subject><ispartof>AIP conference proceedings, 2021, Vol.2371 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0059644$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Trusov, Peter V.</contributor><contributor>Matveenko, Valeriy P.</contributor><contributor>Faerman, Vladimir A.</contributor><contributor>Yants, Anton Yu</contributor><creatorcontrib>Poloskov, Igor E.</creatorcontrib><title>Transitional processes in linear stochastic parabolic and hyperbolic systems with constant delays</title><title>AIP conference proceedings</title><description>A scheme combining the classical method of steps with expansion of the state space (MSSSE) was earlier proposed for an analysis of systems of stochastic ordinary differential equations with one constant time delay (SODDEs). This two-stage scheme is adapted for the analysis of new models described by stochastic partial differential equations (SPDEs) with delays (SPDDEs). The modified scheme together with a usage of the generalized Fokker–Planck– Kolmogorov equation (FPK Eq.) for the probability density functional makes it possible to construct a chain of SPDEs without delays. We exploit this chain to obtain new sequence of PDEs for calculating the first moment functions (fields) of the solution on successive time intervals. Some results of symbolic and numeric calculations for parabolic and hyperbolic equations that carried out in the environment of the mathematical package Mathematica, are presented.</description><subject>Chains</subject><subject>Hyperbolic systems</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Time lag</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oMFb0LqbDabbI5S_IKClwrelslmQ7ekSdzZKvn3prTgzdPMwPMOPC9jtwIWAnL5oBYAqsyz7IzNhFIiKXKRn7MZQJklaSY_L9kV0RYgLYtCzxiuA3bko-87bPkQeuuIHHHf8dZ3DgOn2NsNUvSWDxiw6ttpw67mm3Fw4XjSSNHtiP_4uOG27yhiF3ntWhzpml002JK7Oc05-3h-Wi9fk9X7y9vycZUMItcxUaWrBGBqpWugAYmgJTTKFrlr0lynAFWhSusandVWVKi1FShqPXmJuppic3Z3_DtJfO0dRbPt92GyIpNORUidgZQTdX-kyPqIB20zBL_DMJrvPhhlTvWZoW7-gwWYQ99_AfkLnrl0BQ</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>Poloskov, Igor E.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20210713</creationdate><title>Transitional processes in linear stochastic parabolic and hyperbolic systems with constant delays</title><author>Poloskov, Igor E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-59eb10a2c3ef0f03a0830f5c76ef268200b759cef84dc1ba88c1a1d80941db2c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chains</topic><topic>Hyperbolic systems</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poloskov, Igor E.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poloskov, Igor E.</au><au>Trusov, Peter V.</au><au>Matveenko, Valeriy P.</au><au>Faerman, Vladimir A.</au><au>Yants, Anton Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Transitional processes in linear stochastic parabolic and hyperbolic systems with constant delays</atitle><btitle>AIP conference proceedings</btitle><date>2021-07-13</date><risdate>2021</risdate><volume>2371</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A scheme combining the classical method of steps with expansion of the state space (MSSSE) was earlier proposed for an analysis of systems of stochastic ordinary differential equations with one constant time delay (SODDEs). This two-stage scheme is adapted for the analysis of new models described by stochastic partial differential equations (SPDEs) with delays (SPDDEs). The modified scheme together with a usage of the generalized Fokker–Planck– Kolmogorov equation (FPK Eq.) for the probability density functional makes it possible to construct a chain of SPDEs without delays. We exploit this chain to obtain new sequence of PDEs for calculating the first moment functions (fields) of the solution on successive time intervals. Some results of symbolic and numeric calculations for parabolic and hyperbolic equations that carried out in the environment of the mathematical package Mathematica, are presented.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0059644</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2371 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2551384033
source AIP Journals Complete
subjects Chains
Hyperbolic systems
Ordinary differential equations
Partial differential equations
Time lag
title Transitional processes in linear stochastic parabolic and hyperbolic systems with constant delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Transitional%20processes%20in%20linear%20stochastic%20parabolic%20and%20hyperbolic%20systems%20with%20constant%20delays&rft.btitle=AIP%20conference%20proceedings&rft.au=Poloskov,%20Igor%20E.&rft.date=2021-07-13&rft.volume=2371&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0059644&rft_dat=%3Cproquest_scita%3E2551384033%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551384033&rft_id=info:pmid/&rfr_iscdi=true