Anomaly Detection in Automated Vehicles Using Multistage Attention-Based Convolutional Neural Network

Connected and Automated Vehicles (CAVs), owing to their characteristics such as seamless and real-time transfer of data, are imperative infrastructural advancements to realize the emerging smart world. The sensor-generated data are, however, vulnerable to anomalies caused due to faults, errors, and/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2021-07, Vol.22 (7), p.4291-4300
Hauptverfasser: Javed, Abdul Rehman, Usman, Muhammad, Rehman, Saif Ur, Khan, Mohib Ullah, Haghighi, Mohammad Sayad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Connected and Automated Vehicles (CAVs), owing to their characteristics such as seamless and real-time transfer of data, are imperative infrastructural advancements to realize the emerging smart world. The sensor-generated data are, however, vulnerable to anomalies caused due to faults, errors, and/or cyberattacks, which may cause accidents resulting in fatal casualties. To help in avoiding such situations by timely detecting anomalies, this study proposes an anomaly detection method that incorporates a combination of a multi-stage attention mechanism with a Long Short-Term Memory (LSTM)-based Convolutional Neural Network (CNN), namely, MSALSTM-CNN. The data streams, in the proposed method, are converted into vectors and then processed for anomaly detection. We also designed a method, namely, weight-adjusted fine-tuned ensemble: WAVED, which works on the principle of average predicted probability of multiple classifiers to detect anomalies in CAVs and benchmark the performance of the MSALSTM-CNN method. The MSALSTM-CNN method effectively enhances the anomaly detection rate in both low and high magnitude cases of anomalous instances in the dataset with the gain of up to 2.54% in F-score for detecting different single anomaly types. The method achieves the gain of up to 3.24% in F-score in the case of detecting mixed anomaly types. The experiment results show that the MSALSTM-CNN method achieves promising performance gain for both single and mixed multi-source anomaly types as compared to the state-of-the-art and benchmark methods.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2020.3025875