Performance evaluation of partially filled high porosity metal foam configurations in a pipe

•Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2021-07, Vol.194, p.117081, Article 117081
Hauptverfasser: Jadhav, Prakash H., Gnanasekaran, N., Perumal, D. Arumuga, Mobedi, Moghtada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117081
container_title Applied thermal engineering
container_volume 194
creator Jadhav, Prakash H.
Gnanasekaran, N.
Perumal, D. Arumuga
Mobedi, Moghtada
description •Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95 porosity are considered.•30 pores per inch with porosity of 0.92 provides the best performance factor. In this contemporary research, a parametric analysis of partially filled high porosity metallic foams in a horizontal conduit is performed to augment heat transfer with reasonable pressure drop. The investigation includes six different models filled partly with aluminium foam by varying internal diameter of foams from the wall side and external diameter of foam from the core of the tube. The pore density of the foam ranges from 10 to 45 PPI and their porosity varies from 0.90 to 0.95. Flow dynamics are captured using Darcy Extended Forchheimer model for the porous filled region and two-equation turbulence k-ω model employed in clear region of the fluid. The local thermal non-equilibrium assumption is incorporated in porous filled region of the conduit to compute the heat transport characteristics. The results showed that the thermal performance factor of 10 PPI aluminium foam performs close to the 10 PPI expensive copper foam. The performance factor is found to be higher for 30 PPI aluminium foam amongst the PPI’s of the foam considered. However, the performance factor is found to be 2.93, 2.22 and 1.73 for 30PPI, 45 PPI and 20PPI with their porosities of 0.92, 0.90 and 0.90, respectively for the model 1, model 2 and model 3 at lower Reynolds number of 4500 and then it decreases progressively with increasing flow rates of the fluid. The results of average wall temperature, average Nusselt number and Colburn j factor are also evaluated to obtain best possible performance.
doi_str_mv 10.1016/j.applthermaleng.2021.117081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550685056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943112100524X</els_id><sourcerecordid>2550685056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-555d06336f264a2c1f81bf91bd8b76ac757e6f41eb3486d1e30bcbb331d4b4783</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhosouK7-h4BeWzNNk3bBiyx-wYIe9CaENJ3spqRNTduF_fd2rRdvnmYO7_MO80TRDdAEKIjbOlFd54YdhkY5bLdJSlNIAHJawEm0gCJnMRdUnE4746s4YwDn0UXf15RCWuTZIvp8w2D8xLcaCe6VG9VgfUu8IZ0Kg1XOHYixzmFFdna7I50PvrfDgTQ4KEeMVw3RvjV2O4YftCe2JYp0tsPL6Mwo1-PV71xGH48P7-vnePP69LK-38Q6g3SIOecVFYwJk4pMpRpMAaVZQVkVZS6UznmOwmSAJcsKUQEyWuqyZAyqrMzygi2j67m3C_5rxH6QtR9DO52UKedUFJxyMaXu5pSePugDGtkF26hwkEDl0aes5V-f8uhTzj4n_HHGcfpkbzHIXluctFU2oB5k5e3_ir4BuByIYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550685056</pqid></control><display><type>article</type><title>Performance evaluation of partially filled high porosity metal foam configurations in a pipe</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jadhav, Prakash H. ; Gnanasekaran, N. ; Perumal, D. Arumuga ; Mobedi, Moghtada</creator><creatorcontrib>Jadhav, Prakash H. ; Gnanasekaran, N. ; Perumal, D. Arumuga ; Mobedi, Moghtada</creatorcontrib><description>•Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95 porosity are considered.•30 pores per inch with porosity of 0.92 provides the best performance factor. In this contemporary research, a parametric analysis of partially filled high porosity metallic foams in a horizontal conduit is performed to augment heat transfer with reasonable pressure drop. The investigation includes six different models filled partly with aluminium foam by varying internal diameter of foams from the wall side and external diameter of foam from the core of the tube. The pore density of the foam ranges from 10 to 45 PPI and their porosity varies from 0.90 to 0.95. Flow dynamics are captured using Darcy Extended Forchheimer model for the porous filled region and two-equation turbulence k-ω model employed in clear region of the fluid. The local thermal non-equilibrium assumption is incorporated in porous filled region of the conduit to compute the heat transport characteristics. The results showed that the thermal performance factor of 10 PPI aluminium foam performs close to the 10 PPI expensive copper foam. The performance factor is found to be higher for 30 PPI aluminium foam amongst the PPI’s of the foam considered. However, the performance factor is found to be 2.93, 2.22 and 1.73 for 30PPI, 45 PPI and 20PPI with their porosities of 0.92, 0.90 and 0.90, respectively for the model 1, model 2 and model 3 at lower Reynolds number of 4500 and then it decreases progressively with increasing flow rates of the fluid. The results of average wall temperature, average Nusselt number and Colburn j factor are also evaluated to obtain best possible performance.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2021.117081</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Computational fluid dynamics ; Darcy-extended Forchheimer flow ; Flow velocity ; Fluid dynamics ; Fluid flow ; Foamed metals ; Heat enhancement ratio ; Heat transfer ; Local thermal non equilibrium ; Metal foam ; Metal foams ; Parametric analysis ; Performance evaluation ; Performance evaluation criteria ; Porosity ; Pressure drop ; Reynolds number ; Transport properties ; Turbulence ; Wall temperature</subject><ispartof>Applied thermal engineering, 2021-07, Vol.194, p.117081, Article 117081</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-555d06336f264a2c1f81bf91bd8b76ac757e6f41eb3486d1e30bcbb331d4b4783</citedby><cites>FETCH-LOGICAL-c412t-555d06336f264a2c1f81bf91bd8b76ac757e6f41eb3486d1e30bcbb331d4b4783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2021.117081$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jadhav, Prakash H.</creatorcontrib><creatorcontrib>Gnanasekaran, N.</creatorcontrib><creatorcontrib>Perumal, D. Arumuga</creatorcontrib><creatorcontrib>Mobedi, Moghtada</creatorcontrib><title>Performance evaluation of partially filled high porosity metal foam configurations in a pipe</title><title>Applied thermal engineering</title><description>•Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95 porosity are considered.•30 pores per inch with porosity of 0.92 provides the best performance factor. In this contemporary research, a parametric analysis of partially filled high porosity metallic foams in a horizontal conduit is performed to augment heat transfer with reasonable pressure drop. The investigation includes six different models filled partly with aluminium foam by varying internal diameter of foams from the wall side and external diameter of foam from the core of the tube. The pore density of the foam ranges from 10 to 45 PPI and their porosity varies from 0.90 to 0.95. Flow dynamics are captured using Darcy Extended Forchheimer model for the porous filled region and two-equation turbulence k-ω model employed in clear region of the fluid. The local thermal non-equilibrium assumption is incorporated in porous filled region of the conduit to compute the heat transport characteristics. The results showed that the thermal performance factor of 10 PPI aluminium foam performs close to the 10 PPI expensive copper foam. The performance factor is found to be higher for 30 PPI aluminium foam amongst the PPI’s of the foam considered. However, the performance factor is found to be 2.93, 2.22 and 1.73 for 30PPI, 45 PPI and 20PPI with their porosities of 0.92, 0.90 and 0.90, respectively for the model 1, model 2 and model 3 at lower Reynolds number of 4500 and then it decreases progressively with increasing flow rates of the fluid. The results of average wall temperature, average Nusselt number and Colburn j factor are also evaluated to obtain best possible performance.</description><subject>Aluminum</subject><subject>Computational fluid dynamics</subject><subject>Darcy-extended Forchheimer flow</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Foamed metals</subject><subject>Heat enhancement ratio</subject><subject>Heat transfer</subject><subject>Local thermal non equilibrium</subject><subject>Metal foam</subject><subject>Metal foams</subject><subject>Parametric analysis</subject><subject>Performance evaluation</subject><subject>Performance evaluation criteria</subject><subject>Porosity</subject><subject>Pressure drop</subject><subject>Reynolds number</subject><subject>Transport properties</subject><subject>Turbulence</subject><subject>Wall temperature</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhosouK7-h4BeWzNNk3bBiyx-wYIe9CaENJ3spqRNTduF_fd2rRdvnmYO7_MO80TRDdAEKIjbOlFd54YdhkY5bLdJSlNIAHJawEm0gCJnMRdUnE4746s4YwDn0UXf15RCWuTZIvp8w2D8xLcaCe6VG9VgfUu8IZ0Kg1XOHYixzmFFdna7I50PvrfDgTQ4KEeMVw3RvjV2O4YftCe2JYp0tsPL6Mwo1-PV71xGH48P7-vnePP69LK-38Q6g3SIOecVFYwJk4pMpRpMAaVZQVkVZS6UznmOwmSAJcsKUQEyWuqyZAyqrMzygi2j67m3C_5rxH6QtR9DO52UKedUFJxyMaXu5pSePugDGtkF26hwkEDl0aes5V-f8uhTzj4n_HHGcfpkbzHIXluctFU2oB5k5e3_ir4BuByIYw</recordid><startdate>20210725</startdate><enddate>20210725</enddate><creator>Jadhav, Prakash H.</creator><creator>Gnanasekaran, N.</creator><creator>Perumal, D. Arumuga</creator><creator>Mobedi, Moghtada</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20210725</creationdate><title>Performance evaluation of partially filled high porosity metal foam configurations in a pipe</title><author>Jadhav, Prakash H. ; Gnanasekaran, N. ; Perumal, D. Arumuga ; Mobedi, Moghtada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-555d06336f264a2c1f81bf91bd8b76ac757e6f41eb3486d1e30bcbb331d4b4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Computational fluid dynamics</topic><topic>Darcy-extended Forchheimer flow</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Foamed metals</topic><topic>Heat enhancement ratio</topic><topic>Heat transfer</topic><topic>Local thermal non equilibrium</topic><topic>Metal foam</topic><topic>Metal foams</topic><topic>Parametric analysis</topic><topic>Performance evaluation</topic><topic>Performance evaluation criteria</topic><topic>Porosity</topic><topic>Pressure drop</topic><topic>Reynolds number</topic><topic>Transport properties</topic><topic>Turbulence</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadhav, Prakash H.</creatorcontrib><creatorcontrib>Gnanasekaran, N.</creatorcontrib><creatorcontrib>Perumal, D. Arumuga</creatorcontrib><creatorcontrib>Mobedi, Moghtada</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadhav, Prakash H.</au><au>Gnanasekaran, N.</au><au>Perumal, D. Arumuga</au><au>Mobedi, Moghtada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance evaluation of partially filled high porosity metal foam configurations in a pipe</atitle><jtitle>Applied thermal engineering</jtitle><date>2021-07-25</date><risdate>2021</risdate><volume>194</volume><spage>117081</spage><pages>117081-</pages><artnum>117081</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95 porosity are considered.•30 pores per inch with porosity of 0.92 provides the best performance factor. In this contemporary research, a parametric analysis of partially filled high porosity metallic foams in a horizontal conduit is performed to augment heat transfer with reasonable pressure drop. The investigation includes six different models filled partly with aluminium foam by varying internal diameter of foams from the wall side and external diameter of foam from the core of the tube. The pore density of the foam ranges from 10 to 45 PPI and their porosity varies from 0.90 to 0.95. Flow dynamics are captured using Darcy Extended Forchheimer model for the porous filled region and two-equation turbulence k-ω model employed in clear region of the fluid. The local thermal non-equilibrium assumption is incorporated in porous filled region of the conduit to compute the heat transport characteristics. The results showed that the thermal performance factor of 10 PPI aluminium foam performs close to the 10 PPI expensive copper foam. The performance factor is found to be higher for 30 PPI aluminium foam amongst the PPI’s of the foam considered. However, the performance factor is found to be 2.93, 2.22 and 1.73 for 30PPI, 45 PPI and 20PPI with their porosities of 0.92, 0.90 and 0.90, respectively for the model 1, model 2 and model 3 at lower Reynolds number of 4500 and then it decreases progressively with increasing flow rates of the fluid. The results of average wall temperature, average Nusselt number and Colburn j factor are also evaluated to obtain best possible performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2021.117081</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2021-07, Vol.194, p.117081, Article 117081
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2550685056
source Access via ScienceDirect (Elsevier)
subjects Aluminum
Computational fluid dynamics
Darcy-extended Forchheimer flow
Flow velocity
Fluid dynamics
Fluid flow
Foamed metals
Heat enhancement ratio
Heat transfer
Local thermal non equilibrium
Metal foam
Metal foams
Parametric analysis
Performance evaluation
Performance evaluation criteria
Porosity
Pressure drop
Reynolds number
Transport properties
Turbulence
Wall temperature
title Performance evaluation of partially filled high porosity metal foam configurations in a pipe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20evaluation%20of%20partially%20filled%20high%20porosity%20metal%20foam%20configurations%20in%20a%20pipe&rft.jtitle=Applied%20thermal%20engineering&rft.au=Jadhav,%20Prakash%20H.&rft.date=2021-07-25&rft.volume=194&rft.spage=117081&rft.pages=117081-&rft.artnum=117081&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2021.117081&rft_dat=%3Cproquest_cross%3E2550685056%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550685056&rft_id=info:pmid/&rft_els_id=S135943112100524X&rfr_iscdi=true