Performance evaluation of partially filled high porosity metal foam configurations in a pipe

•Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2021-07, Vol.194, p.117081, Article 117081
Hauptverfasser: Jadhav, Prakash H., Gnanasekaran, N., Perumal, D. Arumuga, Mobedi, Moghtada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Numerical simulation of partially filled metal foams for heat transfer augmentation is studied.•Darcy Forchheimer and Local Thermal Non-Equilibrium models for numerical modeling.•Six different strategies for maximum heat transfer and minimum pressure drop.•10 to 45 pores per inch and 0.88 and 0.95 porosity are considered.•30 pores per inch with porosity of 0.92 provides the best performance factor. In this contemporary research, a parametric analysis of partially filled high porosity metallic foams in a horizontal conduit is performed to augment heat transfer with reasonable pressure drop. The investigation includes six different models filled partly with aluminium foam by varying internal diameter of foams from the wall side and external diameter of foam from the core of the tube. The pore density of the foam ranges from 10 to 45 PPI and their porosity varies from 0.90 to 0.95. Flow dynamics are captured using Darcy Extended Forchheimer model for the porous filled region and two-equation turbulence k-ω model employed in clear region of the fluid. The local thermal non-equilibrium assumption is incorporated in porous filled region of the conduit to compute the heat transport characteristics. The results showed that the thermal performance factor of 10 PPI aluminium foam performs close to the 10 PPI expensive copper foam. The performance factor is found to be higher for 30 PPI aluminium foam amongst the PPI’s of the foam considered. However, the performance factor is found to be 2.93, 2.22 and 1.73 for 30PPI, 45 PPI and 20PPI with their porosities of 0.92, 0.90 and 0.90, respectively for the model 1, model 2 and model 3 at lower Reynolds number of 4500 and then it decreases progressively with increasing flow rates of the fluid. The results of average wall temperature, average Nusselt number and Colburn j factor are also evaluated to obtain best possible performance.
ISSN:1359-4311
1873-5606
DOI:10.1016/j.applthermaleng.2021.117081