Roman {k}-domination in trees and complexity results for some classes of graphs
In this paper, we study Roman { k }-dominating functions on a graph G with vertex set V for a positive integer k : a variant of { k }-dominating functions, generations of Roman { 2 } -dominating functions and the characteristic functions of dominating sets, respectively, which unify classic dominati...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2021-07, Vol.42 (1), p.174-186 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study Roman {
k
}-dominating functions on a graph
G
with vertex set
V
for a positive integer
k
: a variant of {
k
}-dominating functions, generations of Roman
{
2
}
-dominating functions and the characteristic functions of dominating sets, respectively, which unify classic domination parameters with certain Roman domination parameters on
G
. Let
k
≥
1
be an integer, and a function
f
:
V
→
{
0
,
1
,
⋯
,
k
}
defined on
V
called a Roman
{
k
}
-dominating function if for every vertex
v
∈
V
with
f
(
v
)
=
0
,
∑
u
∈
N
(
v
)
f
(
u
)
≥
k
, where
N
(
v
) is the open neighborhood of
v
in
G
. The minimum value
∑
u
∈
V
f
(
u
)
for a Roman
{
k
}
-dominating function
f
on
G
is called the Roman
{
k
}
-domination number of
G
, denoted by
γ
{
R
k
}
(
G
)
. We first present bounds on
γ
{
R
k
}
(
G
)
in terms of other domination parameters, including
γ
{
R
k
}
(
G
)
≤
k
γ
(
G
)
. Secondly, we show one of our main results: characterizing the trees achieving equality in the bound mentioned above, which generalizes M.A. Henning and W.F. klostermeyer’s results on the Roman {2}-domination number (Henning and Klostermeyer in Discrete Appl Math 217:557–564, 2017). Finally, we show that for every fixed
k
∈
Z
+
, associated decision problem for the Roman
{
k
}
-domination is NP-complete, even for bipartite planar graphs, chordal bipartite graphs and undirected path graphs. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-021-00735-z |