A Hybrid Deep Ensemble for Speech Disfluency Classification

In this paper, a novel Hybrid Deep Ensemble (HDE) is proposed for automatic speech disfluency classification on a sparse speech dataset. Categorizations of speech disfluencies for diagnosis of speech disorders have so long relied on sophisticated deep learning models. Such a task can be accomplished...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2021-08, Vol.40 (8), p.3968-3995
Hauptverfasser: Pravin, Sheena Christabel, Palanivelan, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel Hybrid Deep Ensemble (HDE) is proposed for automatic speech disfluency classification on a sparse speech dataset. Categorizations of speech disfluencies for diagnosis of speech disorders have so long relied on sophisticated deep learning models. Such a task can be accomplished by a straightforward approach with high accuracy by the proposed model which is an optimal combination of diverse machine learning and deep learning algorithms in a hierarchical arrangement which includes a deep autoencoder that yields the compressed latent features. The proposed model has shown considerable improvement in downgrading processing time overcoming the issues of cumbersome hyper-parameter tuning and huge data demand of the deep learning algorithms with high classification accuracy. Experimental results show that the proposed Hybrid Deep Ensemble has superior performance compared to the individual base learners, and the deep neural network as well. The proposed model and the baseline models were evaluated in terms of Cohen’s kappa coefficient, Hamming loss, Jaccard score, F-score and classification accuracy.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-021-01657-1