The PRISMA imaging spectroscopy mission: overview and first performance analysis
The PRISMA satellite mission launched on March 22nd, 2019 is one of the latest spaceborne imaging spectroscopy mission for Earth Observation. The PRISMA satellite comprises a high-spectral resolution VNIR-SWIR imaging spectrometer and a panchromatic camera. In summer 2019, first operations during th...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2021-09, Vol.262, p.112499, Article 112499 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The PRISMA satellite mission launched on March 22nd, 2019 is one of the latest spaceborne imaging spectroscopy mission for Earth Observation. The PRISMA satellite comprises a high-spectral resolution VNIR-SWIR imaging spectrometer and a panchromatic camera. In summer 2019, first operations during the commissioning phase were mainly devoted to acquisitions in specific areas for evaluating instrument functioning, in-flight performance, and mission data product accuracy. A field and airborne campaign was carried out over an agriculture area in Italy to collect in-situ multi-source spectroscopy measurements at different scales simultaneously with PRISMA. The spectral, radiometric and spatial performance of PRISMA Level 1 Top-Of-Atmosphere radiance (LTOA) product were analyzed. The in-situ surface reflectance measurements over different landcovers were propagated to LTOA using MODTRAN5 radiative transfer simulations and compared with satellite observations. Overall, this work offers a first quantitative evaluation about the PRISMA mission performance and imaging spectroscopy LTOA data product consistency. Our results show that the spectral smile is less than 5 nm, the average spectral resolution is 13 nm and 11 nm (VNIR and SWIR respectively) and it varies ±2 nm across track. The radiometric comparison between PRISMA and field/airborne spectroscopy shows a difference lower than 5% for NIR and SWIR, whereas it is included in the 2–7% range in the VIS. The estimated instrument signal to noise ratio (SNR) is ≈400–500 in the NIR and part of the SWIR ( |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2021.112499 |