Robust multi‐user detection based on hybrid Grey wolf optimization

Summary The search for an effective nature‐inspired optimization technique has certainly continued for decades. This work proposes a novel robust multi‐user detection algorithm based on Grey wolf optimization and differential evolution algorithm to overcome the problem of high bit error rate (BER) i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2021-08, Vol.33 (15), p.n/a
Hauptverfasser: Sun, Xiyan, Fan, Zhuo, Ji, Yuanfa, Wang, Shouhua, Yan, Suqing, Wu, Sunyong, Fu, Qiang, Ghazali, Kamarul Hawari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary The search for an effective nature‐inspired optimization technique has certainly continued for decades. This work proposes a novel robust multi‐user detection algorithm based on Grey wolf optimization and differential evolution algorithm to overcome the problem of high bit error rate (BER) in multi‐user detection under an impulse noise environment. The simulation results show that the iteration times of the multi‐user detector based on the proposed algorithm is less than those of genetic algorithm, differential evolution algorithm, Grey wolf optimization algorithm, salp swarm algorithm, grasshopper optimisation algorithm, and whale optimization algorithm with the lowerst BER value.
ISSN:1532-0626
1532-0634
DOI:10.1002/cpe.5273