Optimization of Spring Wheat Irrigation Schedule in Shallow Groundwater Area of Jiefangzha Region in Hetao Irrigation District
Due to the large spatial variation of groundwater depth, it is very difficult to determine suitable irrigation schedules for crops in shallow groundwater area. A zoning optimization method of irrigation schedule is proposed here, which can solve the problem of the connection between suitable irrigat...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2019-12, Vol.11 (12), p.2627 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the large spatial variation of groundwater depth, it is very difficult to determine suitable irrigation schedules for crops in shallow groundwater area. A zoning optimization method of irrigation schedule is proposed here, which can solve the problem of the connection between suitable irrigation schedules and different groundwater depths in shallow groundwater areas. The main results include: (1) Taking the annual mean groundwater depth 2.5 m as the dividing line, the shallow groundwater areas were categorized into two irrigation schedule zones. (2) On the principle of maximizing the yield, the optimized irrigation schedule for spring wheat in each zone was obtained. When the groundwater depth was greater than 2.5 m, two rounds of irrigation were chosen at the tillering–shooting stage and the shooting–heading stage with the irrigation quota at 300 mm. When the groundwater depth was less than 2.5 m, two rounds of irrigation were chosen at the tillering–shooting stage, and one round at the shooting–heading stage, with the irrigation quota at 240 mm. The main water-saving effect of the optimized irrigation schedule is that the yield, the soil water use rate, and the water use productivity increased, while the irrigation amount and the ineffective seepage decreased. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w11122627 |