Synergistic Recapturing of External and Internal Phosphorus for In Situ Eutrophication Mitigation
In eutrophication management, many phosphorus (P) adsorbents have been developed to capture P at the laboratory scale. Existing P removal practice in freshwaters is limited due to the lack of assessment of the possibility and feasibility of controlling P level towards a very low level (such as 10 μg...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2020-01, Vol.12 (1), p.2 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In eutrophication management, many phosphorus (P) adsorbents have been developed to capture P at the laboratory scale. Existing P removal practice in freshwaters is limited due to the lack of assessment of the possibility and feasibility of controlling P level towards a very low level (such as 10 μg/L) in order to prevent the harmful algal blooms. In this study, a combined external and internal P control approach was evaluated in a simulated pilot-scale river–lake system. In total, 0.8 m3 of simulated river water was continuously supplied to be initially treated by a P adsorption column filled with a granulated lanthanum/aluminium hydroxide composite (LAH) P adsorbent. At the outlet of the column (i.e., inlet of the receiving tanks), the P concentration decreased from 230 to 20 µg/L at a flow rate of 57 L/day with a hydraulic loading rate of 45 m/day. In the receiving tanks (simulated lake), 90 g of the same adsorbent material was added into 1 m3 water for further in situ treatment, which reduced and maintained the P concentration at 10 µg/L for 5 days. The synergy of external and internal P recapture was demonstrated to be an effective strategy for maintaining the P concentration below 10 µg/L under low levels of P water input. The P removal was not significantly affected by temperature (5–30 °C), and the treatment did not substantially alter the water pH. Along with the superior P adsorption capacity, less usage of LAH could lead to reduced cost for potation eutrophication control compared with other widely used P adsorbents. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w12010002 |