In situ investigation of nanometric cutting of 3C-SiC using scanning electron microscope

Experimentally revealing the nanometric deformation behavior of 3C-SiC is challenging due to its ultra-small feature size for brittle-to-ductile transition. In the present work, we elucidated the nanometric cutting mechanisms of 3C-SiC by performing in situ nanometric cutting experiments under scann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2021-08, Vol.115 (7-8), p.2299-2312
Hauptverfasser: Tian, Dongyu, Xu, Zongwei, Liu, Lei, Zhou, Zhanqi, Zhang, Junjie, Zhao, Xuesen, Hartmaier, Alexander, Liu, Bing, Song, Le, Luo, Xichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Experimentally revealing the nanometric deformation behavior of 3C-SiC is challenging due to its ultra-small feature size for brittle-to-ductile transition. In the present work, we elucidated the nanometric cutting mechanisms of 3C-SiC by performing in situ nanometric cutting experiments under scanning electron microscope (SEM), as well as post-characterization by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). In particular, a new method based on the combination of image processing technology and SEM online observation was proposed to achieve in situ measurement of cutting force with an uncertainty less than 1 mN. Furthermore, the cutting cross-section was characterized by atomic force microscope (AFM) to access the specific cutting energy. The results revealed that the specific cutting energy increase non-linearly with the decrease of cutting depth due to the size effect of cutting tool in nanometric cutting. The high-pressure phase transformation (HPPT) may play the major role in 3C-SiC ductile machining under the parameters of this experiment.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-021-07278-x