Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures

This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2019-07, Vol.11 (7), p.1414
Hauptverfasser: Jaeger, Rick, Tondera, Katharina, Jacobs, Carolyn, Porter, Mark, Tindale, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1414
container_title Water (Basel)
container_volume 11
creator Jaeger, Rick
Tondera, Katharina
Jacobs, Carolyn
Porter, Mark
Tindale, Neil
description This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capacity and allow for changing rainfall patterns and severe weather events that are expected as a consequence of climate change. Three different chamfer angles and a rounded corner were simulated with the software ANSYS Fluent, each of the shapes tested in five different sizes. Rounded and 45 ∘ chamfers at the inlet edge performed best, significantly increasing the flow rate, though the size of the configurations was a critical factor. Inlet angles of 30 ∘ and 60 ∘ caused greater turbulence in the simulations than did 45 ∘ and the rounded corner. The best performing shape of the inlet, the rounded corner, was tested in an experimental flume. The flume flow experiment showed that the optimal inlet configuration, a rounded inlet (radius = 1/5 culvert width) improved the flow rate by up to 20% under submerged inlet control conditions.
doi_str_mv 10.3390/w11071414
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2550465034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550465034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-574bc787c2c644e37c4d9169909ca13e3ff5cd8c9051863b1b4414059443611b3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUH_sASJw4Bb7xO4iMqr0qFIgQXLpHjbNpUqVPsBNS_J1CE2MvsSKOdnWHsFMSFlFpcfgKIFBDwgI1ikcoIEeHw337MJiGsxTCos0yJEXt77Dfka2sablzJn1a78EMe2pKa2i151_LZZuvbD-LXdbAr45fEn01HgdeOL7bk-HRlnKOGz1zlTeh8b7veUzhhR5VpAk1-ccxeb29epvfRfHE3m17NIxvruItUioVNs9TGNkEkmVosNSRaC20NSJJVpWyZWS0UZIksoBiCoFAaUSYAhRyzs_3d4cv3nkKXr9veu8Eyj5USmCghcVCd71XWtyF4qvKtrzfG73IQ-Xd7-V978guFil_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550465034</pqid></control><display><type>article</type><title>Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jaeger, Rick ; Tondera, Katharina ; Jacobs, Carolyn ; Porter, Mark ; Tindale, Neil</creator><creatorcontrib>Jaeger, Rick ; Tondera, Katharina ; Jacobs, Carolyn ; Porter, Mark ; Tindale, Neil</creatorcontrib><description>This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capacity and allow for changing rainfall patterns and severe weather events that are expected as a consequence of climate change. Three different chamfer angles and a rounded corner were simulated with the software ANSYS Fluent, each of the shapes tested in five different sizes. Rounded and 45 ∘ chamfers at the inlet edge performed best, significantly increasing the flow rate, though the size of the configurations was a critical factor. Inlet angles of 30 ∘ and 60 ∘ caused greater turbulence in the simulations than did 45 ∘ and the rounded corner. The best performing shape of the inlet, the rounded corner, was tested in an experimental flume. The flume flow experiment showed that the optimal inlet configuration, a rounded inlet (radius = 1/5 culvert width) improved the flow rate by up to 20% under submerged inlet control conditions.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w11071414</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Chamfering ; Climate change ; Computational fluid dynamics ; Configurations ; Culverts ; Design ; Discharge capacity ; Flow rates ; Flow velocity ; Hydraulics ; Investigations ; Open channels ; Partial differential equations ; Rainfall ; Simulation ; Stormwater ; Velocity ; Viscosity</subject><ispartof>Water (Basel), 2019-07, Vol.11 (7), p.1414</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-574bc787c2c644e37c4d9169909ca13e3ff5cd8c9051863b1b4414059443611b3</citedby><cites>FETCH-LOGICAL-c292t-574bc787c2c644e37c4d9169909ca13e3ff5cd8c9051863b1b4414059443611b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jaeger, Rick</creatorcontrib><creatorcontrib>Tondera, Katharina</creatorcontrib><creatorcontrib>Jacobs, Carolyn</creatorcontrib><creatorcontrib>Porter, Mark</creatorcontrib><creatorcontrib>Tindale, Neil</creatorcontrib><title>Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures</title><title>Water (Basel)</title><description>This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capacity and allow for changing rainfall patterns and severe weather events that are expected as a consequence of climate change. Three different chamfer angles and a rounded corner were simulated with the software ANSYS Fluent, each of the shapes tested in five different sizes. Rounded and 45 ∘ chamfers at the inlet edge performed best, significantly increasing the flow rate, though the size of the configurations was a critical factor. Inlet angles of 30 ∘ and 60 ∘ caused greater turbulence in the simulations than did 45 ∘ and the rounded corner. The best performing shape of the inlet, the rounded corner, was tested in an experimental flume. The flume flow experiment showed that the optimal inlet configuration, a rounded inlet (radius = 1/5 culvert width) improved the flow rate by up to 20% under submerged inlet control conditions.</description><subject>Chamfering</subject><subject>Climate change</subject><subject>Computational fluid dynamics</subject><subject>Configurations</subject><subject>Culverts</subject><subject>Design</subject><subject>Discharge capacity</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Hydraulics</subject><subject>Investigations</subject><subject>Open channels</subject><subject>Partial differential equations</subject><subject>Rainfall</subject><subject>Simulation</subject><subject>Stormwater</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUMtOwzAQtBBIVKUH_sASJw4Bb7xO4iMqr0qFIgQXLpHjbNpUqVPsBNS_J1CE2MvsSKOdnWHsFMSFlFpcfgKIFBDwgI1ikcoIEeHw337MJiGsxTCos0yJEXt77Dfka2sablzJn1a78EMe2pKa2i151_LZZuvbD-LXdbAr45fEn01HgdeOL7bk-HRlnKOGz1zlTeh8b7veUzhhR5VpAk1-ccxeb29epvfRfHE3m17NIxvruItUioVNs9TGNkEkmVosNSRaC20NSJJVpWyZWS0UZIksoBiCoFAaUSYAhRyzs_3d4cv3nkKXr9veu8Eyj5USmCghcVCd71XWtyF4qvKtrzfG73IQ-Xd7-V978guFil_c</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Jaeger, Rick</creator><creator>Tondera, Katharina</creator><creator>Jacobs, Carolyn</creator><creator>Porter, Mark</creator><creator>Tindale, Neil</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190701</creationdate><title>Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures</title><author>Jaeger, Rick ; Tondera, Katharina ; Jacobs, Carolyn ; Porter, Mark ; Tindale, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-574bc787c2c644e37c4d9169909ca13e3ff5cd8c9051863b1b4414059443611b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chamfering</topic><topic>Climate change</topic><topic>Computational fluid dynamics</topic><topic>Configurations</topic><topic>Culverts</topic><topic>Design</topic><topic>Discharge capacity</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Hydraulics</topic><topic>Investigations</topic><topic>Open channels</topic><topic>Partial differential equations</topic><topic>Rainfall</topic><topic>Simulation</topic><topic>Stormwater</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaeger, Rick</creatorcontrib><creatorcontrib>Tondera, Katharina</creatorcontrib><creatorcontrib>Jacobs, Carolyn</creatorcontrib><creatorcontrib>Porter, Mark</creatorcontrib><creatorcontrib>Tindale, Neil</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaeger, Rick</au><au>Tondera, Katharina</au><au>Jacobs, Carolyn</au><au>Porter, Mark</au><au>Tindale, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures</atitle><jtitle>Water (Basel)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>11</volume><issue>7</issue><spage>1414</spage><pages>1414-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capacity and allow for changing rainfall patterns and severe weather events that are expected as a consequence of climate change. Three different chamfer angles and a rounded corner were simulated with the software ANSYS Fluent, each of the shapes tested in five different sizes. Rounded and 45 ∘ chamfers at the inlet edge performed best, significantly increasing the flow rate, though the size of the configurations was a critical factor. Inlet angles of 30 ∘ and 60 ∘ caused greater turbulence in the simulations than did 45 ∘ and the rounded corner. The best performing shape of the inlet, the rounded corner, was tested in an experimental flume. The flume flow experiment showed that the optimal inlet configuration, a rounded inlet (radius = 1/5 culvert width) improved the flow rate by up to 20% under submerged inlet control conditions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w11071414</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2019-07, Vol.11 (7), p.1414
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2550465034
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Chamfering
Climate change
Computational fluid dynamics
Configurations
Culverts
Design
Discharge capacity
Flow rates
Flow velocity
Hydraulics
Investigations
Open channels
Partial differential equations
Rainfall
Simulation
Stormwater
Velocity
Viscosity
title Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20Physical%20Modeling%20to%20Improve%20Discharge%20Rates%20in%20Open%20Channel%20Infrastructures&rft.jtitle=Water%20(Basel)&rft.au=Jaeger,%20Rick&rft.date=2019-07-01&rft.volume=11&rft.issue=7&rft.spage=1414&rft.pages=1414-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w11071414&rft_dat=%3Cproquest_cross%3E2550465034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550465034&rft_id=info:pmid/&rfr_iscdi=true