Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures
This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capac...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2019-07, Vol.11 (7), p.1414 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capacity and allow for changing rainfall patterns and severe weather events that are expected as a consequence of climate change. Three different chamfer angles and a rounded corner were simulated with the software ANSYS Fluent, each of the shapes tested in five different sizes. Rounded and 45 ∘ chamfers at the inlet edge performed best, significantly increasing the flow rate, though the size of the configurations was a critical factor. Inlet angles of 30 ∘ and 60 ∘ caused greater turbulence in the simulations than did 45 ∘ and the rounded corner. The best performing shape of the inlet, the rounded corner, was tested in an experimental flume. The flume flow experiment showed that the optimal inlet configuration, a rounded inlet (radius = 1/5 culvert width) improved the flow rate by up to 20% under submerged inlet control conditions. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w11071414 |