Numerical and Physical Modeling to Improve Discharge Rates in Open Channel Infrastructures

This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2019-07, Vol.11 (7), p.1414
Hauptverfasser: Jaeger, Rick, Tondera, Katharina, Jacobs, Carolyn, Porter, Mark, Tindale, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the findings of a study into how different inlet designs for stormwater culverts increase the discharge rate. The objective of the study was to develop improved inlet designs that could be retro-fitted to existing stormwater culvert structures in order to increase discharge capacity and allow for changing rainfall patterns and severe weather events that are expected as a consequence of climate change. Three different chamfer angles and a rounded corner were simulated with the software ANSYS Fluent, each of the shapes tested in five different sizes. Rounded and 45 ∘ chamfers at the inlet edge performed best, significantly increasing the flow rate, though the size of the configurations was a critical factor. Inlet angles of 30 ∘ and 60 ∘ caused greater turbulence in the simulations than did 45 ∘ and the rounded corner. The best performing shape of the inlet, the rounded corner, was tested in an experimental flume. The flume flow experiment showed that the optimal inlet configuration, a rounded inlet (radius = 1/5 culvert width) improved the flow rate by up to 20% under submerged inlet control conditions.
ISSN:2073-4441
2073-4441
DOI:10.3390/w11071414