Stochastic Model for Drought Forecasting in the Southern Taiwan Basin
The global rainfall pattern has changed because of climate change, leading to numerous natural hazards, such as drought. Because drought events have led to many disasters globally, it is necessary to create an early warning system. Drought forecasting is an important step toward developing such a sy...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2019-10, Vol.11 (10), p.2041 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The global rainfall pattern has changed because of climate change, leading to numerous natural hazards, such as drought. Because drought events have led to many disasters globally, it is necessary to create an early warning system. Drought forecasting is an important step toward developing such a system. In this study, we utilized the stochastic, autoregressive integrated moving average (ARIMA) model to predict drought conditions based on the standardized precipitation index (SPI) in southern Taiwan. We employed data from 1967 to 2006 to train the model and data from 2007 to 2017 for model validation. The results showed that the coefficients of determination (R2) were over 0.80 at each station, and the root-mean-square error and mean absolute error were sufficiently low, indicating that the ARIMA model is effective and adequate for our stations. Finally, we employed the ARIMA model to forecast future drought conditions from 2019 to 2022. The results yielded relatively low SPI values in southern Taiwan in future summers. In summary, we successfully constructed an ARIMA model to forecast drought. The information in this study can act as a reference for water resource management. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w11102041 |