Estimation of Sediment Yield and Maximum Outflow Using the IntErO Model in the Sarada River Basin of Nepal

Soil erosion is a severe environmental problem worldwide as it washes away the fertile topsoil and reduces agricultural production. Nepal, being a hilly country, has significant erosion disputes as well. It is important to cognise the soil erosion processes occurring in a river basin to manage the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2019-05, Vol.11 (5), p.952
Hauptverfasser: Chalise, Devraj, Kumar, Lalit, Spalevic, Velibor, Skataric, Goran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil erosion is a severe environmental problem worldwide as it washes away the fertile topsoil and reduces agricultural production. Nepal, being a hilly country, has significant erosion disputes as well. It is important to cognise the soil erosion processes occurring in a river basin to manage the erosion severity and plan for better soil conservation programs. This paper seeks to calculate the sediment yield and maximum outflow from the Sarada river basin located in the western hills of Nepal using the computer-graphic Intensity of Erosion and Outflow (IntErO) model. Asymmetry coefficient of 0.63 was calculated, which suggests a possibility of large floods to come in the river basin in the future whereas the maximum outflow from the river basin was 1918 m³ s−1. An erosion coefficient value of 0.40 was obtained, which indicates surface erosion of medium strength prevails in the river basin. Similarly, the gross soil loss rate of 10.74 Mg ha−1 year−1 was obtained with the IntErO modeling which compares well with the soil loss from the erosion plot measurements. The IntErO model was used for the very first time to calculate soil erosion rates in the Nepalese hills and has a very good opportunity to be applied in similar river basins.
ISSN:2073-4441
2073-4441
DOI:10.3390/w11050952