A Study of the Impact of Different Flow Velocities and Light Colors at the Entrance of a Fish Collection System on the Upstream Swimming Behavior of Juvenile Grass Carp

When designing a fish collection system for fishpass facilities, considering the approach–avoidance behavior of fish under different flow velocities and light colors, is essential to ensure a good fishpass efficiency. In this study, a generalized physical model for a fish collection system entrance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2019-02, Vol.11 (2), p.322
Hauptverfasser: Mu, Xiangpeng, Zhen, Wanyue, Li, Xiang, Cao, Ping, Gong, Li, Xu, Fengran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When designing a fish collection system for fishpass facilities, considering the approach–avoidance behavior of fish under different flow velocities and light colors, is essential to ensure a good fishpass efficiency. In this study, a generalized physical model for a fish collection system entrance, including the fish collection system channel, the fish luring channel, and the mainstream channel was designed. Grass carp, a representative fish of “four major Chinese carps”, was selected as the research object, and the approach–avoidance behavior of 660 juvenile grass carps (8–12cm), under different flow velocity and light color at a water temperature of 28 ± 1 °C, were investigated. Three general indicators that reflect the fish-luring ability of a fish collection system were proposed, including the optimal flow velocity at the fish collection system entrance, the optimal ratio between the flow velocities at the entrances of the fish luring channel and the fish collection system channel, and the optimal light colors for approach–avoidance behaviors of the fish. Results indicate that (1) there was an optimal flow velocity (approximately 0.3 m/s) at the fish collection system entrance; (2) there existed an optimal ratio (approximately 2.3:1) between the flow velocities at the entrances of the fish luring channel and the fish collection system channel; (3) there were different approach–avoidance behaviors of the fish to various light colors, and the percentages of successful migration of the juvenile grass carps were 0.4%, 0.57%, 0.88%, and 1.43% of that obtained under natural light, when red, white, green, and blue light were used, respectively, at the fish collection system entrance, indicating that the juvenile grass carps would avoid the red light while approaching the blue light. The three proposed general indicators are the keys in the design of a fish collection system entrance, for successful migration of grass carps. The generalized physical model and the experimental devices and methods will provide important references for studying a fish collection system entrance for other fish species.
ISSN:2073-4441
2073-4441
DOI:10.3390/w11020322