Regionalization of a Rainfall-Runoff Model: Limitations and Potentials
Regionalized lumped rainfall-runoff (RR) models have been widely employed as a means of predicting the streamflow of an ungauged watershed because of their simple yet effective simulation strategies. Parameter regionalization techniques relate the parameter values of a model calibrated to the observ...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2019-11, Vol.11 (11), p.2257 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regionalized lumped rainfall-runoff (RR) models have been widely employed as a means of predicting the streamflow of an ungauged watershed because of their simple yet effective simulation strategies. Parameter regionalization techniques relate the parameter values of a model calibrated to the observations of gauged watersheds to the geohydrological characteristics of the watersheds. Thus, the accuracy of regionalized models is dependent on the calibration processes, as well as the structure of the model used and the quality of the measurements. In this study, we have discussed the potentials and limitations of hydrological model parameter regionalization to provide practical guidance for hydrological modeling of ungauged watersheds. This study used a Tank model as an example model and calibrated its parameters to streamflow observed at the outlets of 39 gauged watersheds. Multiple regression analysis identified the statistical relationships between calibrated parameter values and nine watershed characteristics. The newly developed regional models provided acceptable accuracy in predicting streamflow, demonstrating the potential of the parameter regionalization method. However, uncertainty associated with parameter calibration processes was found to be large enough to affect the accuracy of regionalization. This study demonstrated the importance of objective function selection of the RR model regionalization. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w11112257 |