GaN nanorods on V-groove textured Si (111): significant light trapping for photoelectrocatalytic water splitting
Although gallium nitride (GaN) nanostructures are auspicious for photocatalytic activity, geometrical optimization has paid much attention for a significant light trapping in photoelectrochemical applications. To minimize the optical losses, we designed a prototype V-groove textured Si (100) with (1...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-07, Vol.119 (2) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although gallium nitride (GaN) nanostructures are auspicious for photocatalytic activity, geometrical optimization has paid much attention for a significant light trapping in photoelectrochemical applications. To minimize the optical losses, we designed a prototype V-groove textured Si (100) with (111) facets, and GaN nanorods (NRs) were grown over a prototype substrate using plasma-assisted molecular beam epitaxy. The photocurrent density of V-groove textured GaN NRs in the NaOH electrolyte is found to be 801.62 μA/cm2 at 1.14 V vs reversible hydrogen electrode, which was 2.1-fold larger than that of GaN NRs on plain Si (111). Using this prototype V-groove textured Si(100) with (111) facets, a significant light can be trapped and modulated into GaN NRs. Furthermore, the heterostructure between GaN NRs and V-groove textured Si stimulates effective charge separation and transportation. These results represent an important forward step in solar photoelectrolysis. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0055685 |