Breakable Semihypergroups
In this paper, we introduce and characterize the breakable semihypergroups, a natural generalization of breakable semigroups, defined by a simple property: every nonempty subset of them is a subsemihypergroup. Then, we present and discuss on an extended version of Rédei’s theorem for semi-symmetric...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2019-01, Vol.11 (1), p.100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce and characterize the breakable semihypergroups, a natural generalization of breakable semigroups, defined by a simple property: every nonempty subset of them is a subsemihypergroup. Then, we present and discuss on an extended version of Rédei’s theorem for semi-symmetric breakable semihypergroups, proposing a different proof that improves also the theorem in the classical case of breakable semigroups. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym11010100 |