Some Inequalities Using Generalized Convex Functions in Quantum Analysis

In the present work, the Hermite–Hadamard inequality is established in the setting of quantum calculus for a generalized class of convex functions depending on three parameters: a number in ( 0 , 1 ] and two arbitrary real functions defined on [ 0 , 1 ] . From the proven results, various inequalitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2019-11, Vol.11 (11), p.1402
Hauptverfasser: Vivas-Cortez, Miguel J., Kashuri, Artion, Liko, Rozana, Hernández, Jorge E. Hernández
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, the Hermite–Hadamard inequality is established in the setting of quantum calculus for a generalized class of convex functions depending on three parameters: a number in ( 0 , 1 ] and two arbitrary real functions defined on [ 0 , 1 ] . From the proven results, various inequalities of the same type are deduced for other types of generalized convex functions and the methodology used reveals, in a sense, a symmetric mathematical phenomenon. In addition, the definition of dominated convex functions with respect to the generalized class of convex functions aforementioned is introduced, and some integral inequalities are established.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym11111402