Convective, absolute and global azimuthal magnetorotational instabilities

We study the convective and absolute forms of azimuthal magnetorotational instability (AMRI) in a cylindrical Taylor–Couette (TC) flow with an imposed azimuthal magnetic field. We show that the domain of the convective AMRI is wider than that of the absolute AMRI. Actually, it is the absolute instab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2021-09, Vol.922, Article R4
Hauptverfasser: Mishra, A., Mamatsashvili, G., Galindo, V., Stefani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the convective and absolute forms of azimuthal magnetorotational instability (AMRI) in a cylindrical Taylor–Couette (TC) flow with an imposed azimuthal magnetic field. We show that the domain of the convective AMRI is wider than that of the absolute AMRI. Actually, it is the absolute instability which is the most relevant and important for magnetic TC flow experiments. The absolute AMRI, unlike the convective one, stays in the device, displaying a sustained growth that can be experimentally detected. We also study the global AMRI in a TC flow of finite height using direct numerical simulation and find that its emerging butterfly-type structure – a spatio-temporal variation in the form of axially upward and downward travelling waves – is in a very good agreement with the linear analysis, which indicates the presence of two dominant absolute AMRI modes in the flow giving rise to this global butterfly pattern.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2021.548