Synthesis and Characterization of Aminophosphonate Containing Chitosan Polymer Derivatives: Investigations of Cytotoxic Activity and in Silico Study of SARS-CoV-19
Chitosan is broadly used as a biological material since of its excellent biological activities. This work describes investigations of chitosan interaction with SARS-CoV-2, which is occupied by human respiratory epithelial cells through communication with the human angiotension-converting enzyme II (...
Gespeichert in:
Veröffentlicht in: | Polymers 2021-03, Vol.13 (7), p.1046 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chitosan is broadly used as a biological material since of its excellent biological activities. This work describes investigations of chitosan interaction with SARS-CoV-2, which is occupied by human respiratory epithelial cells through communication with the human angiotension-converting enzyme II (ACE2). The β-chitosan derivatives are synthesized and characterized by FT-IR, nuclear magnetic resonance (1H and 13C NMR), mass spectrometry, X-ray diffraction, TGA, DSC, and elemental analysis. The β-chitosan derivatives were screened for cytotoxic activity against the HepG2 and MCF-7 (breast) cancer cell lines. Compound 1h (GI50 0.02 µM) is moderately active against the HepG2 cancer cell line, and Compound 1c is highly active (GI50 0.01 µM) against the MCF-7 cancer cell line. In addition, chitosan derivatives (1a–1j) docking against the SARS coronavirus are found by in-silico docking analysis. The findings show that compound 1c exhibits notable inhibition ability compared with other compounds, with a binding energy value of −7.9 kcal/mol. Based on the molecular docking results, the chitosan analog is proposed to be an alternative antiviral agent for SARS-CoV2. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym13071046 |