Energetic Analysis of Different Configurations of Power Plants Connected to Liquid Chemical Looping Gasification

In this article, a thermodynamic study was conducted on the energetic and exergy performance of a new configuration of liquid chemical looping gasification (LCLG) plant integrated with a power block to assess the overall performance of the system including exergy partitioned in syngas and first law...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2019, Vol.7 (10), p.763
Hauptverfasser: Sarafraz, Mohammad, Safaei, Mohammad, Leon, Arturo, Khaled, Usama, Goodarzi, Marjan, Meer, Rashed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a thermodynamic study was conducted on the energetic and exergy performance of a new configuration of liquid chemical looping gasification (LCLG) plant integrated with a power block to assess the overall performance of the system including exergy partitioned in syngas and first law efficiency (FLE). LCLG is a relatively new concept for the production of high-quality synthetic gas from solid feedstock such as biomass. As the temperature and pressure of the looping system are high, there is thermodynamic potential to co-produce chemical products, power and heat. Hence, in the present work, three different configurations of a power cycle were thermodynamically assessed. In the first proposed power cycle, the produced syngas from the gasifier was combusted in a combustion chamber and the exhausted gases were fed into a gas turbine. In the second and third proposed power cycles, the hot air was directly fed into a gas turbine or was used to produce steam for the steam turbine combined cycle. The processes were simulated with Aspen Plus and Outotec HSC chemistry software packages. The influence of different operating parameters including temperature and pressure of the air reactor and type of oxygen carrier on the first law and exergy efficiency (exergy partitioned in synthetic gas) was assessed. Results showed that the FLE for the proposed gas turbine and steam turbine combined cycles was ~33% to 35%, which is within the range of the efficiency obtained for the state-of-the-art power cycles reported in the literature. Results also showed that lead oxide was a suitable oxygen carrier for the LCLG system, which can be integrated into a steam turbine combined cycle with an FLE of 0.45, while copper oxide showed an FLE of 0.43 for the gas turbine combined cycle.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr7100763